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For many systems characterized as “complex” the patterns exhibited on different scales differ
markedly from one another. For example the biomass distribution in a human body “looks very
different” depending on the scale at which one examines it. Conversely, the patterns at different
scales in “simple” systems (e.g., gases, mountains, crystals) vary little from one scale to another.
Accordingly, the degrees of self-dissimilarity between the patterns of a system at various scales
constitute a complexity “signature” of that system. Here we present a novel quantification of self-
dissimilarity. This signature can, if desired, incorporate a novel information-theoretic measure of
the distance between probability distributions that we derive here. Whatever distance measure is
chosen, our quantification of self-dissimilarity can be measured for many kinds of real-world data.
This allows comparisons of the complexity signatures of wholly different kinds of systems (e.g.,
systems involving information density in a digital computer vs. species densities in a rain-forest
vs. capital density in an economy, etc.). Moreover, in contrast to many other suggested complexity
measures, evaluating the self-dissimilarity of a system does not require one to already have a model
of the system. These facts may allow self-dissimilarity signatures to be used as the underlying
observational variables of an eventual overarching theory relating all complex systems. To illustrate
self-dissimilarity we present several numerical experiments. In particular, we show that underlying
structure of the logistic map is picked out by the self-dissimilarity signature of time series’ produced
by that map.

I. INTRODUCTION

The search for a measure quantifying the intuitive no-
tion of the “complexity” of systems has a long history
[1, 6]. One striking aspect of this search is that for al-
most all systems commonly characterized as complex, the
spatio-temporal patterns exhibited on different scales dif-
fer markedly from one another. Conversely, for systems
commonly characterized as simple the patterns are quite
similar.

The human body is a familiar example of such self-
dissimilarity; as one changes the scale of the spatio-
temporal microscope with which one observes the body,
the pattern one sees varies tremendously. The (out of
equilibrium) terrestial climate system is another excel-
lent illustration, having very different dynamic processes
operating at all spatiotemporal scales, and typically be-
ing viewed as quite complex. Complex human artifacts
also share this property, as anyone familiar with large-
scale engineering projects will attest.

Conversely, the patterns at different scales in “sim-
ple” systems like gases and crystals do not vary signifi-
cantly from one another. Similarly, once it has fossilized
a dead organism is static across time, i.e., completely self-
similar along the time axis. What relatively little spatio-
temporal complexity it still possesses is purely spatial,
a relic of its complex past. Based on such examples,
we argue that it is the self-similar aspects of simple sys-
tems, as revealed by allometric scaling, scaling analysis
of networks, etc. [7], that reflects their inherently sim-
ple nature. Such self-similarity means that the pattern
across all scales can be encoded in a short description for

simple systems, unlike the pattern for complex systems.
More generally, even if one could find a system com-

monly viewed as complex that was clearly self-similar in
all important regards, it is hard to see how the same sys-
tem wouldn’t be considered even more “complex” if it
were self-dissimilar. Indeed, it is hard to imagine a sys-
tem that is highly self-dissimilar in both space and time
that wouldn’t be considered complex.

Accordingly, it is the self-dissimilarity (SD) between
the patterns at various scales that constitutes the com-
plexity “signature” of a system [11]. Intuitively, such a
signature tells us how the information and its process-
ing [2] at one scale in a system is related to that at the
other scales. Highly different information processing at
different scales means the system is efficient at encoding
as much processing into its dynamics as possible. In con-
trast, having little difference between the various scales,
i.e., high redundancy, is often associated with robustness.

The simplest version of such a signature is to reduce
all of the patterns to a single number measuring their
aggregate self-dissimilarity. This would be analogous to
conventional measures which quantify a system’s “com-
plexity” as a single number [12]. We can use richer sig-
natures however. One is the symmetric matrix of the
dissimilarity values between all pairs of patterns at dif-
ferent scales. More generally, say we have a dissimilarity
measure that can be used to quantify how “spread out”
a set of more than two patterns is. Then we can measure
the spread of triples of scale-indexed patterns, quadru-
ples, etc. In such a situation the signature could be a
tensor, (e.g., a real number for each possible triple of
patterns), not just a matrix.
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SD signatures may exploit model-based understanding
about the system generating a data set of spatio-temporal
patterns (for example, to statistically extend that data
set). However they are functions of such a data set rather
than of any model of the underlying system. So in con-
trast to some other suggested complexity measures, with
SD one does not need to understand a system and then
express that understanding in a formal model in order
to measure its complexity. This is important if one’s
complexity measure is to serve as a fundamental obser-
vational variable used to gain understanding of particular
complex systems, rather than as a post-hoc characterizer
of such understanding.

Indeed, one application of SD is to (in)validate mod-
els of the system that generated a dataset, by compar-
ing the SD signature of that dataset to the signature of
data generated by simulations based on those models.
Model-independence also means that the SD complexity
measure can be applied to a broad range of (data sets
associated with) systems found in nature, thereby poten-
tially allowing us to compare the processes underlying
those types of systems. Such comparisons need not in-
volve formal models. For example, SD signatures can
be viewed as machine learning “features” synopsizing a
dataset [3]. Given multiple such datasets the associated
SD signatures/features can be clustered. This may re-
veal relationships between the systems underlying those
datasets. We can do this even when the underlying sys-
tems live in wholly different kinds of spaces, since we are
characterizing (the datasets generated by) those systems
with their SD signatures, and those signatures all live in
the same space (e.g., real-valued matrices). In this way
clustering can generate a taxonomy of “kinds of systems”
that share the same complexity character. SD signatures
can also serve as supervised learning predictor variables
for extrapolating a dataset (e.g., into the future, as in
non-linear time-series prediction). In all this, SD sig-
natures are “complexity-based” analogues of traditional
measures used for these purposes, e.g., power spectra.

The first formalization of SD appeared in [11]. This pa-
per begins by motivating a new formalization. We then
present several examples of that formalization. Next we
present a discussion of information theoretic measures
of dissimilarity between probability distributions, an im-
portant issue of SD analysis. We end by illustrating SD
analysis with several computer experiments [13]. We end
by discussing some of the broader context of the notion
of self-dissimilarity

Intuitively, a number quantifying the self-simmilarity
of a system (e.g., its fractal dimension) is akin to the first
moment of a distribution, with the self-dissimilarity be-
ing analogous to the higher-order moments. Our central
thesis is that just as the higher higher-order moments
capture much that is important concerning a distribu-
tion, the self-dissimilarity signature of a system — that
which is not captured in the self-simmilarity value —
capture much that is important concerning that system.
We do not claim that self-dissimilarity captures all that

is important in complex systems. We only suggest that
self-dissimilarity is an important component of complex-
ity, one with the novel advantage that it can actually
be evaluated for many different types of real-world sys-
tems, as demonstrated by the quantification of it that we
present below.

Furthmore, we do not claim that our particular
quantification of it is the best way to measure self-
dissimilarity. There are many other quantifications that
bear investigating, e.g., Fourier decompositions, wavelet-
based analysis, multi-fractals, etc. They seem to be ill-
suited in various ways for our purposes. For example,
conventional Fourier decompositions and wavelet analysis
does not directly compare patterns at two scales; rather
they quantify “what is left over” at the finer scale after
the coarser scale is accounted for. But it may well turn
out that some variant of them is the best quantification
of self-dissimilarity.

II. FORMALIZATION OF
SELF-DISSIMILARITY

There are two fundamental steps in our approach to
constructing the SD signature of a dataset.

The first step is to quantify the scale-dependent pat-
terns in the dataset. We want to do this in a way that
treats all scales equally (rather than taking the pattern
at one scale to be what’s “left over” after fitting the pat-
tern at another scale to a data set, for example). We
also want to minimize the a priori structure and associ-
ated statistical artifacts introduced in the quantification
of the patterns. Accordingly, we wish to avoid the use
of arbitrary bases, and work with entire probability dis-
tributions rather than low-dimensional synopses of such
distributions.

The second fundamental step in forming a SD signa-
ture is numerically comparing the scale-dependent pat-
terns, which for us means comparing probability distri-
butions. We illustrate these steps in turn.

A. Generation of scale-indexed distributions

1. Let q∗ be the element in a space Q0 whose self-
dissimilarity interests us. Usually q∗ will be a data
set, although the following holds more generally.

2. Typically there is a set of transformations of q∗

that we wish our SD measure to ignore. For exam-
ple, we might want the measure to give the same
value when applied both to an image and to a slight
translation of that image. We start by applying
those transformations to q∗, thereby generating a
set of elements of Q0. Taken as a whole, that set
is “cleansed” of what we wish to ignore. Formally,
we quantify such an invariance we wish to ignore
with a function g that maps any q0 ∈ Q0 to the
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set of all elements of Q0 related by our invariance
to that q0. We will work with the entire set g(q∗)
rather than (as is often done) a lower-dimensional
synopsis of it. In this way we avoid introducing
statistical artifacts and the issue of how to choose
the synopsizing function.

3. In the next step we apply a series of scale-indexed
transformations to the elements in g(q∗) (e.g., mag-
nifications to different powers). The choice of trans-
formations will depend on the precise domain at
hand. Intuitively, the scale-indexed sets produced
by these transformations are the “patterns” at the
various scales. They reflect what one is likely to see
if the original q∗ were “examined at that scale”, and
if no attention were paid to the transformations we
wish to ignore.

We write this set of transformations as the θ-
indexed set Wθ : Q0 "→ Q1 (θ is the generalized
notion of “scale”). So formally, the second step of
our procedure is the application of Wθ to the ele-
ments in the set g(q∗) for many different θ values.
After this step we have a θ-indexed collection of
subsets of Q1. Each such collection constitutes a
pattern of ponts at the associated scale.

Note that we again work with full distributions
rather than synopses of them. This allows us to
avoid spatial averaging or similar operations in the
Wθ, and thereby avoid limiting the types of Q0 on
which SD may be applied, and to avoid introducing
statistical biases.

4. The pattern at each scale, a set, is a probability
distribution pθ. At this point in the procedure
we may elect to use machine learning and avail-
able prior knowledge [3] to transform pθ, e.g., by
smoothing it. Such a step, which we use in our
experiments reported below, can often help us in
the subsequent quantification of the dissimilarities
between the scales’ patterns. More generally, if one
wishes to introduce model-based structure into the
analysis, it can be done through this kind of trans-
formation [14].

B. Quantifying dissimilarity among multiple
probability distributions

Applying the preceding analysis to a q∗ will give us a
collection of distributions, {pθ}, one such distribution for
each value of θ. All those distributions are dfined over
the same space, Q1. It is this collection as a whole that
characterizes the system’s self-dissimilarity.

Note that different domains Q0 will have different
spaces Q1. So to be able to use SD analysis to relate
many different domains, we need to distill each domain’s
collection {pθ}, consisting of many distributions over the
associated Q1, into values in some common tractable

space Q∗. In fact, often there is too much information in
a collection of distributions over Q1 values for them to be
a useful way of analyzing a system; even when just ana-
lyzing a single system by itself, without comparing it to
other systems, often we will want to distill its collection
down to a tractable characterization, i.e., to an element
of Q∗.

Now what we are ultimately interested in concerning
any such collection is the dissimilarity of the distribu-
tions comprising it. So a natural choice for Q∗ is one or
more real numbers measuring how “spread out” the dis-
tributions in any particular collection are. Accordingly,
we need a measure ρ quantifying how spread out an ar-
bitrary collectionof distributions is.

We want to use ρ both to quantify the aggregate self-
dissimilarity of an entire collection, and to quantify the
dissimilarity between any pair of distributions from the
collection. More generally, we would like to be able to
use ρ to quantify the dissimilarity relating any n-tuple
of distributions from the collection. Ideally then, such a
measure ρ of how “spread out” a collections of distribu-
tions is should:

1. Obey the usual properties of a metric when it takes
two arguments, i.e., obey the usual properties when
comparing two distributions each of which is just
a single delta function. More generally it should
obey the extension of those properties appropriate
for when there are more than two arguments, and in
particular the extensions for when those arguments
are sets of multiple distributions) [10];

2. Be finite even for the delta-function distributions
commonly formed from small data sets;

3. Be quickly calculable even for large spaces;

4. Have a natural interpretation in terms of the to-
tal amount of information stored in its (probability
distribution) arguments.

Until recently, perhaps the measure best satisfying
these desiderata was the Jensen-Shannon (JS) distance
[2], i.e., the entropy of the average of the distributions
minus the average of their entropies. However this mea-
sure fails to satisfy 1. In Section IV we present an al-
ternative, which like JS distance obeys 3 and 4, and may
be better suited to SD analysis. (It is unclear whether it
obeys 1.)

Recent work has uncovered many multi-argument ver-
sions of distance, called multimetrics [10]. These obey
1 through 2 by construction, and many of them obey 3 as
well. These are what we actually use in our experiments.
However the multimetrics uncovered to date do not obey
4.

III. EXAMPLES

To ground the discussion we now present some exam-
ples of the foregoing:
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Example 1: Q0 is the space of real-valued functions
over a Euclidean space X, e.g., a space of images over
x ∈ X. If we wish our measure to ignore a set of
translations over X then g(q0) is that set of translations
of image q0. Thus if q∗ = f(x) then g(q∗) is the set
{f(x− x1), f(x− x2), · · · } where xi are translation vec-
tors. Each Wθ is magnification by θ followed by window-
ing about the origin so that only the local structure of
the image around xi is considered. So if T is an operator
which truncates an image f(x) to a window around the
origin then Wθ(g(q0)) = {T [f(x−x1

θ )], T [f(x−x2
θ )], · · · }.

Accordingly each qθ,i
1 ≡ T [f(x−xi

θ )] is a real-valued func-
tion over a subspace of X.

If we discretize X into n bins, we can convert each such
function into an element of Rn. In this way each scale’s
(finite) set of functions gets converted into a (finite) set
of Euclidean vectors.

While multimetrics generalize to distances between ob-
jects which are not probability densities, to apply the JS
or Kullback-Leibler (KL) distance [2] to our scale-indexed
sets of vectors we need to convert them to probabilities.
Say the range of the functions over X making up Q0 were
finite rather than all of R (e.g., if the range were a finite
set of possible numeric readings on an observation appa-
ratus.) In this case our “vectors” would be fixed-length
strings over a finite alphabet (see Ex. 2). In this case
we could convert each set of “vectors” to a probability
simply by setting that probability to be uniform over the
elements of the set and zero off it. For real-valued vectors
this is typically ill-behaved (the support of the distribu-
tion has measure 0). So we must run a density-estimation
algorithm to convert each finite set of vectors in Rn into
a smooth probability density across Rn.

In real-world images made via a noisy observation ap-
paratus typically there is intrinsic blurring that biases
nearby points in the image to have similar intensities.
We can choose our density estimation algorithm to re-
flect that effect directly. For example, with a Bayesian
density estimation algorithm, we can build the blurring
operator into the likelihood function. Alternatively, we
can capture such blurring effects directly in the set of
transformations g, by by expanding that set to include
localized blurring transformations.

However they are produced, we need a way to con-
vert our set of density functions (one for each scale) into
a SD signature. The simplest approach is to form the
symmetric matrix of all pairwise comparisons whose i, j
element is the multimetric (or JS distance or what have
you) between the probability of θi and that of θj .

All of this can be naturally extended to “images” that
are not real-valued functions, but instead take on values
in some other space (e.g., of symbols, or of matrices).
For example, an element of Q0 could be the positions of
particles of various types in R3.

Note that q∗ may itself be generated from an obser-
vational windowing process. This may be accounted for
in a likelihood model P (D|q0) which smooths intensities

and admits Gaussian noise.

Example 2: This example is a variant of Ex. 1, but
is meant to convey the generality of what “scale” might
mean. We have the same Q0 and g as in Ex. 1. How-
ever say we are not interested in comparing a q∗ to a
scaled version of itself. Instead, each θ represents a set
of n vectors {vi(θ) ∈ X}. Then have Wθ(q0) be the n-
vector “stencil” (q0(v1(θ)), q0(v2(θ)), · · · q0(vn(θ))). Then
we could have ρ be any distance measure over sets of vec-
tors in Q1 = Rn, as discussed in Ex. 1. (The difference
with Ex. 1 is that here we arrived at those vectors with-
out any binning.)

As an example, we could have stencils consist of two
points, with v1 = 0 for all θ, and then have v2 = θa,
where the vector a is the same for all θ. In this example
Wθ isolates a pair of points separated by a multiple θ of
the vector a. So our self-dissimilarity measure quantifies
how the patterns of pairs of points in f separated by θa
change as one varies θ. Another possibility is to have
v1 = Rθ(a), where Rθ(·) is rotation by θ. In this case our
measure quantifies how the patterns of pairs of points
changes as one rotates the space.

Another important extension is where n > 2, so that
we aren’t just looking at pairs of points. In particular,
say X is N -dimensional, and have vi = θai ∀i, where
each ai is a vector in X, a1 equaling 0 and θ being the
scale, as usual. Then we might want to have the distances
between any pair of points in a scale’s stencil, |θai−θaj |,
be a constant times θ, independent of i and j. This
would ensure there is no “cross-talk” between scales; all
distances in a scale’s stencil are identical. To obey this
desideratum requires that the underlying stencil {ai} be
a tetrahedron, of at most N + 1 points.

Example 3: This example is the same as Ex. 2, ex-
cept that X is an M -dimensional infinite lattice rather
than a Euclidean space, and g and the Wθ are modified
appropriately. For instance, we could have M = 1 and
have symbolic-valued functions f , so that an element of
q0 is a symbolic time series. Take n = 2, with v1 = 0,
and v2 = θ, a now being an integer. Since the range of
f is now a finite set of symbols rather than the reals, we
do not need to do any binning or even density estima-
tion; each Wθ(g(q∗)) is a histogram, i.e., it is already a
probability distribution.

Since distributions now are simply vectors in a Eu-
cliean space, we can measure their dissimilarity with
something as unsophisticated as L2 distance. Alterna-
tively, as before, we can compare scales by using JS
distance for ρ. In this case our SD measure is an
information-theoretic quantification of how time-lagged
samples of the time-series q0 differ from each other as
one changes the lag size.

Having n > 2 allows even more nuanced versions of
this quantification. Furthermore, other choices of ρ (de-
scribed below) allow it take more than two sets at once
as arguments. In this case, ρ takes an entire set of time-
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lagged samples, running over many time lags, and mea-
sures how “spread out” the members of that full set are.

These measures complement more conventional
information-theoretic approaches to measuring how the
time-lagged character of q0 varies with lag size. A typical
such approach would evaluate the mutual information be-
tween the symbol at a random point in q0 and the symbol
θ away, and see how that changes with θ. Such an ap-
proach compares singletons: it sees how the distribution
of symbols at a single point are related to the distribu-
tion of symbols at the single time-lagged version of that
point. These new measures instead allow us to compare
distributions of n-tuples to one another.

Example 4: This is a dramatically different example
to show that self-dissimilarity can be measured for quite
different kinds of objects. Let Q0 be a space of networks,
i.e., undirected graphs with labeled nodes. Have g(q0) be
the set of relabelings of the nodes of network q0. Such
relabelings are what we want the SD analysis to ignore.

Have each Wθ run a decimation algorithm on q0, with θ
parameterizing the precise algorithm used. Each such al-
gorithm iteratively grows outward from some fixed start-
ing (θ-independent) node a, tagging some nodes which
it passes over, and removing other nodes it passes over.
Changing θ changes parameters of the algorithm, e.g.,
changes which iterations are the ones at which nodes are
removed. Intuitively, each algorithm Wθ demagnifies the
network by decimation, and then windows it. Different
Wθ demagnify by different amounts.

More precisely, at the start of each iteration t, there is
a subset of all the nodes that are labeled the “current”
nodes for t. Another subset of nodes, perhaps overlap-
ping those current at t, constitutes the “tagged” nodes.
During the iteration, for each current node i, a set of
non-tagged nodes St(i) is chosen based on i. For exam-
ple, this could be done by looking at all non-tagged nodes
within a certain number of links of i. Then a subset of
the nodes in St(i) is removed, with compensating links
added as needed. The remaining nodes are added to the
set of tagged nodes, and a subset of them are added to a
set of nodes that will be current for iteration t+1. Then
the process repeats.

At the earliest iteration at which the number of tagged
nodes is at least N , the iterations stop, and all remaining
nodes in q0 are removed. Some fixed rule is then used for
removing any excess nodes to ensure that the final net
has exactly N nodes. (Typically N is far smaller than
the number of nodes in q0.) ρ can then be any algorithm
for measuring distance between sets of identically-sized
networks.

IV. DISSIMILARITY OF PROBABILITY
DISTRIBUTIONS

In the experiments presented below, we use one of the
multimetrics discussed in [10]. However other measures

could be used, and in particular it is worth briefly dis-
cussing measures derived from information-theoretic ar-
guments concerning the distance between probability dis-
tributions.

The most commonly used way to define a distance be-
tween two distributions is their KL distance. This is
the infinite limit log-likelihood of generating data from
one distribution but mis-attributing it to the other dis-
tributions. Unfortunately, the KL distance between two
distributions is infinite if either distribution has points
at which it is identically zero; violates the triangle in-
equality; is not even a symmetric argument of its two
arguments. (It is non-negative though, equaling zero iff
its two arguments are identical.)

Some proposals have been made for overcoming some
of these shortcomings. In particular, the JS distance be-
tween two distributions does not blow up and is sym-
metric. However it violates the triangle inequality [4, 9].
A more important problem for us is that it is not clear
that JS distance is the proper information-theoretic mea-
sure for SD analysis. To illustrate this it helps to consider
an alternative information-theoretic measure for distance
between probability distributions, by modifying the type
of reasoning originally employed by Shannon.

Say we have a set of K distributions {πi}. (For us that
set is generated by application of g and the members of
{Wθ}, as discussed above.) Intuitively, our alternative to
JS distance quantifies how much information there is in
the knowledge of whether a particular x was generated
from one member of {πi} or another. To do this we sub-
tract two terms, each being an average over all possible
K-tuples of x values, (x1, x2, . . . , xK).

The summand of the first average is the Shannon in-
formation in (x1, x2, . . . , xK) when that K-tuple is pro-
duced by simultaneously sampling each of the K distri-
butions, so that each xi is a sample of the associated
πi. The summand of the second average is the informa-
tion in (x1, x2, . . . , xK) according to the “background”
version of the joint distribution, in which all information
about which distribution generated which x is averaged
out. Intuitively, the difference in these averages tells us
how much information there is in the labels of which dis-
tribution generates which x:

ρ({π}) = −
∑

x1,x2,···

∏
πi(xi) ln

[∑
P

∏
k πk(Pxk)∏

k πk(xk)

]
(1)

where the
∑

P notation means a sum over all permuta-
tions of the {xj} that rearranges them as the P{xj}, and
the sum is over all such permutations.

Being a KL distance, this ρ equals 0 when all the dis-
tributions are equal, and is never negative. It is not yet
known though if it is a full-blown multimetric.

V. EXPERIMENTS

We illustrate the SD framework with two simple sets
of computational experiments. The datasets (i.e., the
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FIG. 1: Self-dissimilarity signatures of binary datasets. Blue
indicates low dissimilarity (high similarity), and red indi-
cates high dissimilarity (low similarity): (a) the repeating se-
quence 1111100000, (b) the repeating sequence 1111111000,
(c) a quasi-periodic sequence, (d) the cantor set. For each
of these datasets the aggregate self-dissimilarity of the associ-
ated scale-indexed set of distributions are 15.5. 13.9, 50.3, and
2.4 respectively. All signatures were obtained using a window
of length 9. The signatures (f) and (h) are from the satellite
images (e) and (g) over Baja California and Greenland re-
spectively. A 3x3 window was used for these two-dimensional
images.

q0’s) in all the experiments are functions over either one-
dimensional or two-dimensional finite lattices. The SD
analyses we employed were special cases of Ex. 3, using
a square observation “window” of width w to specify the
Wθ.

In our first experiments our datasets were binary-
valued (i.e., each q0 was a map from a lattice into B).
Accordingly, the task of estimating each scale’s probabil-
ity density, pθ, simplifies to estimating the probability of
sequences of w bits. For small w this can be done using
frequency counts (cf. Ex. 3.). We then used a modified
bounding box multimetric[10]:

ρ(pθ1 , pθ2 , · · · ) = −1 +
∑

i

max
(
pθ1

i , pθ2
i , · · ·

)
(2)

where pθ
i is the i’th component of the w-dimensional Eu-

clidean vector pθ. Note that being a multimetric, this
measure can be used to give both the aggregate self-
dissimilarity of all distributions {pθ} as well as the dis-
tance between any two of the distributions.

The pairwise (matrix) SD signatures of six datasets are
presented in Fig. 1. The integrals were all evaluated by
Monte Carlo importance sampling. The periodicity of the
underlying data in 1(a),(b) is reflected in the repeating
nature of the SD signature. The quasiperiodic dataset,
1(c) shows hints of periodicity in its signature, and signif-
icantly greater overall structure. The fractal-like object
1(d) shows little overall structure (beyond that arising

from finite-data-size artifacts). 1(e),(g) show results for
satellite images which have been thresholded to binary
values.

Note that the aggregate self-dissimilarity values are
far from zero. To a degree this is due to edge effects
and other statistical artifacts. However even without
such artifacts one would expect a non-zero aggregate self-
dissimilarity for the periodic data. The reason is that our
window width is on the order of the period of the system.
An analogy is a crystal examined with a window on the
scale of the lattice spacing. While such a crystal would
appear roughly self-similar for windows extending over a
large number of lattice cells, when the window width is of
the order of the lattice spacing, the pattern does change
as one magnifies the data. Examined for window widths
around the lattice spacing, the system is not self-similar.

Clustering of our 6 datasets is done by finding the par-
titions of (a), (b), (c), (d), (f), (h) which minimize the
total intra-group multimetric distance. For 2 clusters the
optimal grouping is [(a)(b)(c)(f)(h)] and [(d)]; for 3 clus-
ters the best grouping is [(a)(b)(c)], [(d)], and [(f)(h)];
for 4 clusters the best grouping is [(a)(b)(c)], [(d)], [(f)],
and [(h)]; and for 5 clusters the best grouping is [(a)],
[(b)(c)], [(d)], [(f)], and [(h)].

We also provide results for the time series generated
by the logistic map xt+1 = rxt(1− xt), where as usual r
is a parameter varying from 0 to 4 and 0 ≤ xt ≤ 1 [15].

We iterated the map 2000 times before collecting data,
to ensure that the data is taken from the attractor. For
each r-dependent time series on the attractor we generate
a self-dissimilarity signature by taking g to be possible
initial conditions x0, and Wθ to be a decimation and
windowing, as in Ex. 3. Wθ acts on a real-valued vector
x = [x1, x2, · · · ] to return a vector of length 3 whose com-
ponents are x1, x1+θ, x1+2θ where the allowed values for θ
are the positive integers. g and Wθ produce points in R3.
Note that in these experiments each pθ is a probability
density function over R3. We estimated each such pθ by
centering a zero mean spherical Gaussian on every vector
in the associated Wθ[g(q0)], with an overall covariance de-
termined by cross validation. We again used a modified
bounding box multimetric [10] of Eq. (2) modified for
continuous probability densities. The resulting integral
was evaluated by Monte Carlo importance sampling.

The aggregate complexity results are presented as the
solid red line of 2. The results confirm what we would like
to see in a complexity measure. The measure peaks at the
accumulation point and is low for small r (where there is a
fixed point) and large r (where the time series is random).
Additional structure is seen for r > 3.57, paralleling the
complexity seen in the bifurcation diagram of the logistic
map.

To investigate the effects of noise on the SD measure
we contaminated all time series the zero mean Gaussian
noise having standard deviation of 0.001, and applied
the same algorithm. The resulting aggregate complexity
measure is plotted as the black dashed line of 2. The
major features of the aggregate SD measure are preserved
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FIG. 2: Aggregrate SD complexity measure as a function of r
(red line) for the time series generated from the logistic map
xt+1 = rxt(1 − xt). The dashed black line corresponds to a
noisy version of the data where zero mean Gaussian noise has
been added.

but with some blurring of fine detail.

VI. DISCUSSION

Most systems commonly viewed as com-
plex/interesting have been constructed by an evo-
lutionary process (e.g. life, culture, intelligence). If
we assume that there is some selective advantage in
such systems for maximizing the amount of information
processing within the system’s volume, then we are led
to consider systems which are able to process informa-
tion in many different ways on many spatio-temporal
scales, with those different processes all communicating
with one another. By exploiting different scales to run
different information processing, such systems are in a
certain sense maximally dense with respect to how much
information processing they achieve in a given volume.
Systems processing information similarly on different
scales, or even worse not exploiting different scales
at all, are inefficient in their information-processing
capabilities.

Despite these potential benefits of multi-scale informa-
tion processing, explicitly constructing a system which
engages in such processing is not trivial. Even specifying
the necessary dynamical conditions (e.g., a Hamiltonian)
for a system to support multi-scale information process-
ing appears difficult. Tellingly, it is also difficult to ex-
plicitly construct a physical system that engages in what
most researchers would consider “life-like” behavior, or
one that engages in “intelligent” behavior; our hypothe-
sis is that this is not a coincidence, but reflects the fact
that such systems engage in multi-scale information pro-
cessing.

In this paper, rather than try to construct systems that
engage in multi-scale information processing, we merely

assume that nature has stumbled upon ways to do so.
Our present goal is only to determine how to recognize
and quantify such multi-scale information processing in
the first place, and then to measure such processing in
real-world systems. Future work would integrate such
real-world self-dissimilarity data into a theoretical frame-
work.

In this regard, note that to make maximal use of the
different compuational processes at different scales, pre-
sumably there must be efficient communication between
those processes. Such inter-scale communication is com-
mon in systems usually viewed as complex. For example,
typically the effects of large scale occurrences (like bro-
ken bones in organisms) propagate to the smallest levels
(stimulating bone cell growth) in complex systems. Sim-
ilarly, slight changes at small scales (the bankruptcy of a
firm, or the mutation of a gene) can have marked large-
scale (industry-wide, or body-wide) effects.

It is generally agreed that any “intelligent” organism
has a huge amount of adaptively formed extra-genetic
information-processing concerning the outside world, in
its brain. The information-processing in the brain of such
an organism is tightly and extensively coupled to the
information processing of the outside world. Now that
outside world is physically a scale up from the organism.
So an “intelligent” organism is a subsystem of the world
that has the same type of computational coupling with
the larger scales of the world that living, complex organ-
isms have between the various scales within their own
bodies.

On the other hand, for a complex system to be stable
it must be robust with respect to changes in its environ-
ment. This suggests that the effects of random pertur-
bations on a particular scale should be isolated to one
or a few scales lest the full system be prone to collapse.
To this extent scales must be insulated from each other.
Accordingly, as a function of the noise inherent in an
environment, there may be very precise and constrained
ways in which scales can interact in robust systems. If so
it would be hoped that when applied to real-world com-
plex systems a self-dissimilarity measure would uncover
such a modularity of multi-scale information processing.

Puzzles like how to decide whether a system “is alive”
are rendered moot if approached from the perspective of
self-dissimilariy. We argue that such puzzles arise from
trying to squeeze physical phenomena into pre-existing
theoretical models (e.g., for models concerning “life” one
must identify the atomic units of the physical system,
define what is meant for them to reproduce, etc.). We
instead view life as a characteristic signature of a system’s
self-dissimilarity over a range of spatio-temporal scales.
In this view life is more than a yes/no bit, and even more
than a real number signifying a degree—it is an entire
signature.

It may be possible to use such self-dissimilarity sig-
natures to compare entirely different kinds of systems.
This would allos us to address questions like the follow-
ing: How does a modern economy’s complexity signature
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compare to that of the organelles inside a prokaryotic
cell? What naturally occurring ecology is most like that
of a modern city? What one is most like that of the
charge densities moving across the internet? Can cul-
tures be distinguished according to their self-dissimilarity
measure?

By concentrating on self-dissimilarity signatures we
can compare systems over different regions of scales,
thereby investigating how the complexity character itself
changes as one varies the scale. This allows us to address
questions like: For what range of scales is the associ-
ated self-dissimilarity signature of a transportation sys-

tem most like the signature of the current densities inside
a computer? How much is the self-dissimilarity signature
of the mass density of the astronomy-scale universe like
that of an ideal gas when examined on mesoscopic scales,
etc.?
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